Genomic Sequencing across a Zone of Secondary Contact Uncovers Complex Demographic History and Admixture between Cryptic Gray Fox Lineages

Sophie Preckler-Quisquater¹, Elizabeth Kierepka^{2,} Dawn M. Reding³, Antoinette J. Piaggio⁴, Seth Riley⁵ and Ben Sacks¹ (1) Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA; 2) North Carolina State University

3) Luther College
4) USDA/APHIS National Wildlife Research Center
5) United States National Park Service, Los Angeles, CA

Introduction

Past climatic fluctuations have heavily influenced current species distributions, generating complex evolutionary histories through periods of isolation in refugia as well as secondary contact and gene flow post-expansion. The gray fox (Urocyon cinereoargenteus) represents the most basal extant canid lineage and occurs only in the Americas. Previous mitochondrial analysis identified deeply divergent (up to 1 Mya) eastern and western lineages, and a major phylogeographic break between lineages along the Great Plains Suture Zone, indicating that gray foxes have likely been isolated for numerous glacial-interglacial cycles.^{1,2} However, it is still unclear whether these lineages maintained complete reproductive isolation during this time, or whether there were periods of secondary contact and admixture post-divergence. Using a combination of reduced-representation (n = 259) and whole-genome (n = 42) sequencing of gray foxes across their US range, we generated estimates of nuclear split times and assessed concordance with previously published mitochondrial estimates.^{1,2} We additionally quantified genome-wide ancestry proportions, to identify whether there was any evidence of nuclear admixture between eastern and western lineages at the previously described contact zone. Using a local ancestry inference approach, we additionally tested whether gene flow was recent (potentially due to human induced landscape changes in the last 100 years) or whether it occurred during an older post-Pleistocene expansion event. We also explored whether selective introgression of beneficial genetic variation may have played a role in the evolutionary history of these two lineages. Understanding the complexities surrounding divergence and secondary contact between these gray fox lineages will allow us to better understand the role past and future climate shifts may play in the overall diversity of species.

Methods

Identifying Selectively Introgressed Regions

population experienced a more recent pulse of western gene flow (100 – 150 generation ago).

ן 1.0 נאל ד

Eastern Admixed Population

Sample Collection We obtained 376 gray fox samples during 2013–2019 from three different sources across North America including 211 DNA extracts from Texas, 26 DNA extracts from California, and 139 tissue samples from fur-trapped foxes across several eastern and western states

Estimating Divergence Time

To assess the phylogenetic relationship of eastern and western gray foxes and estimate nuclear divergence time, we incorporated GBS data from other members of the Canidae family, and first generated a maximum likelihood phylogram.⁵ We then converted this tree to a semi-parametric time calibrated tree with a root age estimated between 9 and 11.9 mya.⁶

Local Ancestry Inference and Estimating Admixture Timing In order to identify the distribution of eastern vs western gray fox ancestry throughout the hybrid genomes, we first identified a set of ~500k Ancestry Informative SNPs, and then used Ancestry-HMM, a hidden Markov model that can classify each region (eastern H_0 , western H_0 , H_{e}) using information derived from nonadmixed Western and Eastern reference populations.⁷ This approach simultaneously infers local ancestry and estimates the most likely number and timing of admixture pulses that generated the observed ancestry patterns.

Lab Work Part 1
DNA extraction using Qiagen DNEasy Blood and Tissue Kit
Genotyping-by Sequencing³

Global Ancestry Inference We conducted Bayesian population assignment and assessed admixture (K = 2) using 44,931 GBS loci in fastStructure.⁴

Lab Work Part 2 Whole Genome Sequencing We conducted whole genome sequencing on a subset of our samples that included unadmixed Western (n = 12) and Eastern (n = 11) reference gray foxes as well as gray foxes from each of the putatively admixed eastern (n = 9) and Western (n = 9) populations.

Fig 5. Proportion of eastern and western introgressed ancestry at each SNP averaged across all individuals within the western (left panel; n=9) and eastern (right panel; n=6) admixed populations, respectively. We identified the top 1% outliers, denoted by the gray horizontal line, for the western (>0.504) and eastern (>0.499) admixed populations based upon the distribution of the average introgression proportions for all loci across the genome.

Conclusions

- A zone of secondary contact with nuclear gene flow between eastern and western gray fox lineages was identified in the southern Great Plains region.
- Divergence estimates correspond to the Early-Middle Pleistocene Transition (1.4 – 0.4 mya) in the Irvingtonian land mammal age, which is substantially older than those typically characterizing intraspecific divisions for most North American carnivores.^{8,9}
- We identified an older pulse of eastern ancestry into the western gray fox population approximately 300-600 generations ago. We also identified a more recent pulse of western ancestry into the eastern gray fox lineage approximately 100-150 generations ago. This more recent pulse may coincide with human-induced landscape changes facilitating migration.
- Several regions may have undergone selective

Identifying Selectively Introgressed Regions To identify putative genomic regions that have undergone selective introgression across the zone of secondary contact, we averaged the relative introgressed ancestry proportions at each site across the genome within the western and eastern admixed populations.

introgression across the zone of secondary contact, however further analyses will be required to identify any putative functional roles.

100 – 150 GensWesternEasternGray FoxGray Fox

300 – 600 Gens

References

- UCDAVIS
- American Gray Foxes (Urocyon spp.) and Ancient Roots in Pleistocene California. PLoS ONE 10, e0136329.
 Reding, D.M., Castañeda-Rico, S., Shirazi, S., Hofman, C.A., Cancellare, I.A., Lance, S.L., Beringer, J., Clark, W.R., Maldonado, J.E., 2021. Mitochondrial Genomes of the United States Distribution of Gray Fox (Urocyon cinereoargenteus) Reveal a Major Phylogeographic Break at the Great Plains Suture Zone. Front. Ecol. Evol. 9, 666800
- 3. Elshire, R.J., Glaubitz, J.C., Sun, Q., Poland, J.A., Kawamoto, K., Buckler, E.S., Mitchell, S.E., 2011. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE 6, e19379. analyses

1. Goddard, N.S., Statham, M.J., Sacks, B.N., 2015. Mitochondrial Analysis of the Most Basal Canid Reveals Deep Divergence between Eastern and Western North

- 4. Raj, A., Stephens, M., Pritchard, J.K., 2014. fastSTRUCTURE: Variational Inference of Population Structure in Large SNP Data Sets. Genetics 197, 573–589.
- 5. Paradis, E., Schliep, K., 2019. ape 5.0: an environment for modern phylogenetics and evolutionary in R. Bioinformatics 35, 526–528.
- 6. Chavez, D.E., Gronau, I., Hains, T., Kliver, S., Koepfli, K.-P., Wayne, R.K., 2019. Comparative genomics provides new insights into the remarkable adaptations of the African wild dog (Lycaon pictus). Sci Rep 9, 8329.
- 7. Corbett-Detig, R., Nielsen, R., 2017. A Hidden Markov Model Approach for Simultaneously Estimating Local Ancestry and Admixture Time Using Next Generation Sequence Data in Samples of Arbitrary Ploidy. PLoS Genet 13, e1006529.
- 8. Aubry, K.B., Statham, M.J., Sacks, B.N., Perrine, J.D., Wisely, S.M., 2009. Phylogeography of the North American red fox: vicariance in Pleistocene forest refugia. Molecular Ecology 18, 2668–2686.
- 9. Reding, D.M., Bronikowski, A.M., Johnson, W.E., Clark, W.R., 2012. Pleistocene and ecological effects on continental-scale genetic differentiation in the bobcat (Lynx rufus). Molecular Ecology 21, 3078–3093.

